From:	(\$22)
To:	Pearce, Kelly
Subject:	FW: FYI - Concentrating Solar Power [DLM=For-Official-Use-Only] [SEC=UNCLASSIFIED]
Date:	Thursday, 17 March 2016 5:30:10 PM
Attachments:	image001.png
	image002.png
	image003.png

Just for interest. K

(s22)

 Sent: Thursday, 17 March 2016 5:29 PM

 (s22)
 (s22)

 Subject: RE: FYI - Concentrating Solar Power [DLM=For-Official-Use-Only] [SEC=UNCLASSIFIED]

(s22)

(s22)

New entrant wind and solar PV are more expensive than new entrant coal and gas, and require support if the policy objective is to deliver more renewable into electricity markets. New entrant solar thermal, wave and geothermal require even greater (and different type of support) to bring them to a stage where they are able to compete on a commercial basis.

(s22)

(see) (see) (see) To: (see) Subject: RE: FYI - Concentrating Solar Power [DLM=For-Official-Use-Only] [SEC=UNCLASSIFIED]

All,

has already completed a 2015 levelised cost assessment of fossil and renewable technologies in South Australia and the NEM. This is attached.

Key charts/tables are below. Solar thermal with storage is estimate as the highest cost form of new entrant electricity generation in SA.

(s22)

Technology	Fuel type	Max Capacity factor (%)	2014		2015	
			CO ₂ emissions (kqCO ₂ - e/MWh)	Minimum LCOE (\$/MWh sent out)	CO ₂ emissions (kqCO ₂ - e/MWh)	Minimum LCOE (\$/MWh sent out)
Wind (100 MW)	Wind	43	-	99	•	99
Blomass	Biomass	70	23	100	23	119
Solar PV (FFP)	Solar	21	•	224		149
Solar PV (SAT)	Solar	21			-	183
Solar PV (DAT)	Solar	21			-	240
Solar thermal (CR with storage)	Solar	42	-	277	-	218
Solar thermal (CLF)	Solar	23	-	328		284
Solar thermal (PT with storage)	Solar	42	•	302	-	294
Wave***	Oceanic	60			-	147
Geothermal - HAS	Geothermal	83	-	137		
Geothermal - EGS	Geothermal	83	-	137		

Table 12 LCOE and emissions comparison across technologies (renewables)

	Fuel type	Capacity factor (%)	Region	2014		2015	
Technology				CO2 emissions (kgCO2- e/MWh)	Minimum LCOE (\$/MWh sent out)	CO2 emissions (kgCO2- e/MWh)	Minimum LCOE (\$/MWh sent out)
Open Cycle	Gas	10	SA	700	240	699	205
(OCGT)			NEM	700	240	592	195
Combined cycle	Gas	83	SA	499	101	478	82
(CCGT)			NEM	499	101	405	73
Combined cycle	Gas	83	SA	213	140		
(CCGT - with CCS)			NEM	213	140	97	115
Supercritical	Brown coal	83	SA				
(SCPC)			NEM			1213	91
Supercritical	Brown coal	83	SA				
(SCPC - with CCS)			NEM			175	169
Supercritical	Black coal	83	SA				
(SCPC)			NEM			827	72
Supercritical (SCPC – with CCS)	Black coal	83	SA				
			NEM	123	152	134	140
Supercritical	Black coal	83	SA				
(SCPC – with oxy combustion CCS)			NEM	22	158		
Integrated Gasification	Black coal	83	SA				
and Combined Cycle (IGCC – with CSS)			NEM	150	191		
Integrated solar	Gas / Solar	83	SA	446	123	450	103
combined cycle (ISCC)			NEM	376	112	440	92

Table 13 LCOE and emissions comparison across technologies (non-renewable)

From:	(s22) on behalf of <u>Philp, Brenton</u>
To:	<u>"patrick.suckling@dfat.gov.au";</u> Pearce, Kelly; Archer, Brad
Cc:	Chisholm, James (\$22) ; (\$22) ; (\$22) ; White, James ; (\$22) ; (\$22) ; O"Toole, James ; _; ; _; _; ;
Subject:	CSIRO Low Emissions Technology Roadmap - 2050 scenarios [SEC=DLM, DLM=For-Official-Use-Only]
Date:	Friday, 28 October 2016 4:09:42 PM
Attachments:	LETR - 2050 abatement v1.pdf LETR pathways.pdf

Dear Kelly, Brad and Patrick

(s22)

This is an out-of-session email to seek agreement from steering committee representatives about the Low Emissions Technology Roadmap post 2030 emissions reduction target and to note updated pathways.

Updated Pathways

There has also been some evolution to the pathway analysis.

CSIRO have combined Pathways 3 and 4 (see attached Pathways slide), for two key reasons:

1. CSIRO found that wave and biomass which were analysed under Pathway 4 were

unlikely to reach significant scale, leaving Pathway 3 mainly focused on Concentrated Solar Thermal (CST).

2. CST is functionally similar to other baseload/dispatchable energy sources such as High Efficiency Low Emissions (HELE), nuclear and geothermal, and so it makes sense to include it in the same pathway.

	s22
:22)	
	~ 22
	522
	Regards
	Brenton Philp
	Assistant Secretary
	Gas, Governance and International Energy Division
	Department of the Environment and Energy

PO Box 787, CANBERRA, ACT 2601 T: 02 6275 9026 ^[s22] brenton.philp@environment.gov.au | Environment.gov.au

The Department acknowledges the traditional owners of country throughout Australia and their continuing connection to land, sea and community. We pay our respects to them and their cultures and to their elders both past and present.

Low Emissions Technology Roadmap: key technologies in each pathway

Pathways							
		P1. Energy productivity plus	P2. Variable renewable energy (VRE)	P3. Dispatchable power and hydrogen	P4. All in		
Energy productivity		 Full potential of EP captured through a range of demand- side techs¹ 	BAU progress		 Full potential of EP captured through a range of demand- side techs¹ 		
Electric -ity	Gener- ation	 Wind and solar PV (capped at 40%) Biomass Gas combined cycle 	 Wind and solar PV (no cap) Wave Biomass Gas combined cycle 	 As per P1, plus: CST HELE + CCSU Nuclear Geothermal 	 All allowed (no cap on wind and solar PV) 		
	Enablers		 Storage Other enabling equipment DER control technologies Standalone power systems and microgrids 		• As per P2		
Key techno- logies Electrification and fuel switching Other		 Electrification of industrial and b Electric vehicles (EVs) and electric 	ouilding heat (when emissions intens ification of mobile equipment in min	ity of grid allows emissions reductior ing (switch to conveyors)	1)		
		Solar thermal heatBiomass heat					
		Switch from coal to gas in industrial heat					
		Switch to gas in freight		• Hydrogen economy e.g. solar fuels, export of hydrogen, FCVs ³			
		Next-generation biofuels					
		 Technologies to reduce fugitives from underground coal mines CCS for vented CO2 in LNG 					
				• Other CCSU ²			
	Energy pro	Energy productivity Electric -ity Electrification and fuel switching Other	Energy productivity P1. Energy productivity plus Energy productivity - Full potential of EP captured through a range of demand-side techs ¹ Energy productivity - Wind and solar PV (capped at 40%) Electric - Biomass -ity Enablers Electrification and fuel switching - Electrification of industrial and the electric vehicles (EVs) and electric Switch from coal to gas in industion of switch to gas in freight - Switch to gas in freight Other - Technologies to reduce fugitives of CCS for vented CO2 in LNG	Energy productivity P1. Energy productivity plus P2. Variable renewable energy (VRE) Energy productivity • Full potential of EP captured through a range of demand- side techs ¹ • BAU progress Energy for ductivity • Wind and solar PV (capped at 40%) • Wind and solar PV (capped at 40%) • Wind and solar PV (no cap) Electric -ity • Biomass • Gas combined cycle • Storage • Other enabling equipment Electrification and fuel switching • Electrification of industrial and building heat (when emissions intens • Electric vehicles (EVs) and electrification of mobile equipment in mini- strict vehicles (EVs) and electrification of mobile equipment in mini- • Solar thermal heat • Switch from coal to gas in industrial heat • Switch to gas in freight • Next-generation biofuels • Technologies to reduce fugitives from underground coal mines • CCS for vented CO2 in LNG	Energy productivity P2. Variable renewable energy (VRE) P3. Dispatchable power and hydrogen Energy productivity • Full potential of EP captured through a range of demand-side techs ¹ • BAU progress Energy productivity • Full potential of EP captured through a range of demand-side techs ¹ • BAU progress Energy productivity • Wind and solar PV (no cap) at 40% (Capped at 40%) • Wind and solar PV (no cap) end at 40% (Capped at 40%) • Storage Electric • Biomass • Gas combined cycle • Storage • Under energing equipment energing eq		

1. E.g. HVAC, appliances, buildings, transport (includes demand reduction and transport mode switching); 2. Bioenergy with CCS (BECSS), hydrogen production from gas/coal, CCS for emissions from direct combustion; 3. Fuel cell vehicles

(s22)			
From: Sent: To: Cc: Subject:	^(s22) Friday, 17 March 2017 2:39 PM ^(s22) RE: For input - Corro [DLM=For-Of	ficial-Use-Only]	
	For Official Us	e Only	
Hi :			
Suggested words for the	corro fron ^(s22)	've asked ^(s22)	area to provide you some
extra words on ⁽⁵²²⁾			
(\$22)			

Geothermal

Energy security is a top priority for the Government. Keeping the lights on and bills down are paramount. My Government is committed to achieving the policy trifecta of affordable, reliable and secure energy, while meeting our substantial global emissions reduction commitments. We are taking a technology agnostic, 'all of the above' approach to energy policy and focusing on the outcomes. I applaud the initiative taken by the ^(s22) in introducing geothermal energy technology to Western Queensland.

(s22)

From: ^(s22) Sent: Friday, 17 March 2017 12:59 PM To ^(s22) Subject: FW: For input - Corro [DLM=For-Official-Use-Only]

For Official Use Only

From ^(s22)
Sent: Wednesday, 15 March 2017 5:26 PM
To: ^(\$22)
Cc:
Subjects For input Corro [D] M-For Official

Subject: For input - Corro [DLM=For-Official-Use-Only]

For Official Use Only

Hello all,

^(s22) (Qld) has written to the PM on a range of issues and the Office has asked us to prepare a response. Grateful if you could consider the attached and provide relevant input (standard words etc) by next **Monday 20 March**. The letter is very scant on detail but would appreciate any input to help build the response.

Attachment on Geothermal Energy —^(s22)

(s22)

(s22)

From: Sent: To: Subject:	^(s22) Thursday, 5 January 20 ⁻ Pearce, Kelly; ^(s22) Summary of ^(s22)	7 5:20 PM work on 100% renewables in the NEM [DLM=Sensitive]				
- Sensitive -						
All,						
This is a quick sum	many o ^(\$22)	to do a feasibility study for				

This is a quick summary of the new presearch. He has been funded by to do a feasibility study for 100% renewable energy in the NEM, and these are the preliminary results. Additional research will include energy market impacts, including retail prices.

What the study has looked at

(s22)

- The study looks at the cost of achieving 100% renewables using only proven technologies that is, technologies with more than 100 GW of global deployment. This is a very conservative feature of the study it means that it doesn't rely on technologies for which there's no evidence base for cost and which don't have a pre-existing supply chain.
 - It focusses on solar PV, wind, pumped hydro energy storage (PHES) and a new high voltage DC (HVDC) transmission network.
 - It excludes solar thermal, tidal and geothermal as too speculative, nuclear as lacking social license, new on-river hydroelectricity (there are no more suitable sites) and new biomass (this would come at a cost to food production).

From: ^(s22)

(s22)

Sent: Thursday, 5 January 2017 5:20 PM To: Pearce, Kelly; (^(s22) Subject: Summary of ^(s22) work on 100% renewables in the NEM [DLM=Sensitive]

<u>Sensitive</u>

All,

This is a quick summary of research. He has been funded by^(s22) to do a feasibility study for 100% renewable energy in the NEM, and these are the preliminary results. Additional research will include energy market impacts, including retail prices.

What the study has looked at

- The study looks at the cost of achieving 100% renewables using only proven technologies that is, technologies with more than 100 GW of global deployment. This is a very conservative feature of the study it means that it doesn't rely on technologies for which there's no evidence base for cost and which don't have a pre-existing supply chain.
 - It focusses on solar PV, wind, pumped hydro energy storage (PHES) and a new high voltage DC (HVDC) transmission network.
 - It excludes solar thermal, tidal and geothermal as too speculative, nuclear as lacking social license, new on-river hydroelectricity (there are no more suitable sites) and new biomass (this would come at a cost to food production).