s22	

Section 22	
Section 22	
s22	

----Original Message-----From: **s**22

Sent: Tuesday, 4 October 2016 11:48 AM

To: Moriarty, Greg Cc: Clarke, Drew

Subject: FW: Some notes for our 4 October meeting [DLM=Sensitive]

Sensitive

I met with John Short this morning.
Section 22
Section 22 Sees an opportunity for that to become three way in time with the Japanese who he says are very keen to market the ultra-super critical generation tech to India, including offering concessional loans to India for ultra-super critical plant. He says that he understands that the Japanese finance is in additional to that already on offer through the green Finance initiatives.
Section 22
s22
Original Message From: Short, John [mailto:John.Short@s22 Sent: Sunday, 25 September 2016 2:17 PM To: s22 Cc: Clarke, Drew Subject: Some notes for our 4 October meeting
s22
Thank you for agreeing to meet with me on Tuesday, 4 October.
As I advised Drew, I understand that Indian Prime Minister Modi raised the issue of "clean coal technology" with Prime Minister Turnbull on the sidelines of G20 earlier this month Section 22
Section 22
s22

Section 22
In the coal industry, references to "clean coal technology" are taken to mean what is called HELE: High Efficiency Low Emissions Technology. It is also often described as Ultra Super Critical technology.
Importantly a coal-fired HELE technology plant, especially when used with high quality thermal coal, can reduce carbon emissions by 40-50% when compared to existing old power plants in countries such as India.
The IEA Clean Coal Centre has the following important statistic: If all new coal-fired power plants (under construction or planned) were Ultra Super Critical plants - rather than the currently planned lower level of technology, the estimated consequential annual reduction in CO2 emissions would be 2 billion tonnes - equivalent to India's current annual CO2 emissions.
Thus the MOU could be a valuable vehicle for moving India up what I call "the technology curve" - and as it moves up that technology curve (to Ultra Super Critical plants versus the current Indian Government policy that all new power plants from 2017 onwards must be (the inferior) Super Critical technology), there is greater incentive for India to import high quality thermal coal (from Australia) as using high quality thermal coal leads to a lower CO2 emissions outcome versus the use of low quality thermal coal in USC plants. Section 22
(b) Japan has the most advanced HELE technology and is looking to "market" it in Asia and beyond. (3) Japan has surplus capital - and, therefore, could supply low interest funding for Ultra Super Critical power plans to help bring down their cost. I will forward you a separate email on this cost issue. Section 22

Section 22	
Best regards,	
John Short	
Section 22	
Section 22	
Section 22	_

Section 22

From:

Section 22

Sent:

Friday, 27 January 2017 10:40 AM

To:

Pearce, Kelly; s22

Cc:

Yeaman, Luke; Gruen, David

Subject:

Attachments:

RE: HELE Brief [SEC=PROTECTED, DLM=Sensitive:Cabinet]

Note for PMC - Preliminary analysis of HELE brief.docx

PROTECTED Sensitive: Cabinet

Hi **s22**

s47C

Sectio

Section 22

Section 22 | I Environment, Energy and Climate Branch

Industry, Infrastructure and Environment Division | Department of the Prime Minister and Cabinet

p. Section 22 e. Section 22

PO Box 6500 CANBERRA ACT 2600

s34(3)

s34(3)		

From: Pearce, Kelly

Sent: Wednesday, 18 January 2017 4:56 PM

To: s22

Cc: Section 22 ; Yeaman, Luke; Gruen, David

Subject: RE: HELE Brief [DLM=For-Official-Use-Only]

For Official Use Only

Hi s22

s47C

Regards Kelly From: s22

Sent: Wednesday, 18 January 2017 4:34 PM

To: Pearce, Kelly

Cc: Section 22 Yeaman, Luke; Gruen, David

Subject: RE: HELE Brief [DLM=For-Official-Use-Only]

For Official Use Only

Thanks Kelly

s34(3)

s22

From: Pearce, Kelly

Sent: Wednesday, 18 January 2017 1:42 PM

To: s22

Cc: Section 22 Yeaman, Luke < Luke. Yeaman@pmc.gov.au >; Gruen, David

<David.Gruen@pmc.gov.au>

Subject: FW: HELE Brief [DLM=For Official Use Only]

For Official Use Only

Hi s22

Attached the information that Minister Canavan was quoted on in yesterday's press.

The Department has indicated there was never 'commissioned research' as reported in the Australia – this appears to be a misinterpretation by the media. The 'commissioned research' was standard Ministerial briefing for information.

Regards

Kelly

Kelly Pearce | Assistant Secretary

Environment, Energy and Climate

Industry, Infrastructure & Environment Division | Department of the Prime Minister and Cabinet

o. s22 | m. s22

e. kelly.pearce@pmc.gov.au / unfccctaskforce@pmc.gov.au | www.dpmc.gov.au

PO Box 6500 CANBERRA ACT 4001

s47C	

s47C	

s47C		

Section 22

From:

Pearce, Kelly

Sent:

Tuesday, 31 January 2017 4:34 PM

To:

s22

Subject: Attachments: RE: HELE % [DLM=For-Official-Use-Only]

s34(1)(c)

BSporton presentation to MCA roundtable.pdf

For Official Use Only

s47C

Table 4. Potential emission savings by upgrading to USC technology today

		Lower	Upper
		Limit	Limit
Actual	Mt	16	0.05
USC	Mt	126.96	117.44
Difference	Mt	-33	-43
Difference	%	-21%	-27%

Assumptions:

- 1. Actual data is based on the emissions from plants listed in Attachment B for 2015–16.
- 2. Emissions from the four coal-fired plants in Western Australia in 2015–16 were estimated using an emissions intensity figure for 2014–15 from the Clean Energy Regulator.
- 3. Emissions from USC and AUSC were calculated using 2015–16 generation figures and CO2 intensity factors from the IEA as presented in Attachment A.
- 4. The phase-out/replacement profile is based on existing capacity being replaced by USC/AUSC in the year of retirement.

From: s22

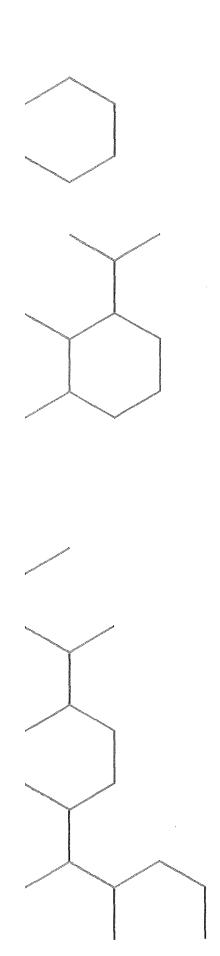
Sent: Tuesday, 31 January 2017 4:25 PM

To: Pearce, Kelly

Subject: HELE % [DLM=For-Official-Use-Only]

For Official Use Only

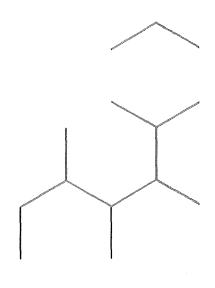
s47C


(From Appendix D of the Finkel Preliminary Report 14 December 2016)

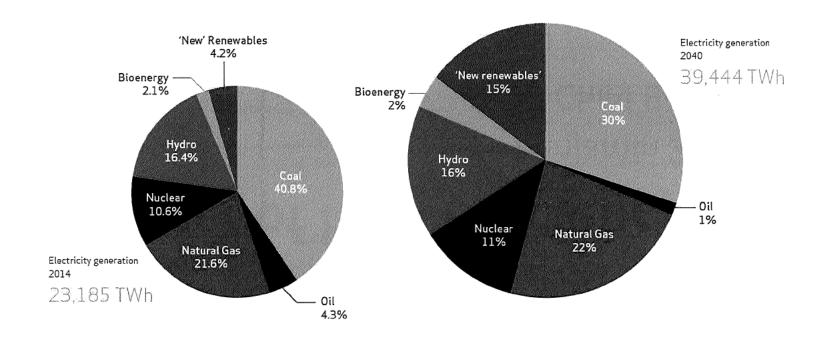
Generation type	Estimated operating emissions as generated ₇₃ (kg CO ₂ -e/MWh)
Subcritical brown coal	1,140
Supercritical brown coal	960
Subcritical black coal	940
Supercritical black coal	860
Ultra-supercritical brown coal	845
Ultra-supercritical black coal	700
Open cycle gas turbine (OCGT)	620
Combined cycle gas turbine (CCGT)	370
Wind	0
Hydro	0
Solar PV	0
NEM electricity grid emissions intensity	82074

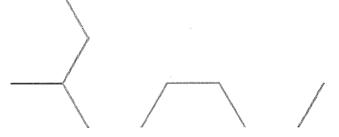
page 6, A Cleaner Future for Power Station – Interdepartmental Task Group Discussion Paper (Cmwth): http://industry.gov.au/Energy/Documents/sustainability-and-climate-change/DiscussionPaperCleanerFuturePowerStation.pdf

⁷³ For simplicity, where a generation technology has a range of emissions intensities associated with it, the average has been used.


page 18, National Greenhouse Accounts Factors – Australian National Greenhouse Accounts, Department of the Environment and Energy, 2016.

The power of high efficiency coal

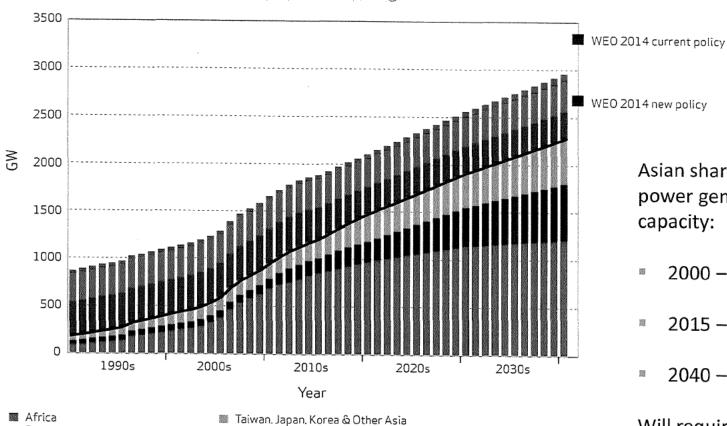

Benjamin Sporton Chief Executive



Coal continues to grow, even as share declines

Global electricity mix

Asia will drive new coal generation capacity



Europe and Mediterranean

Source: World Coal Association analysis

South America & Central America

North America

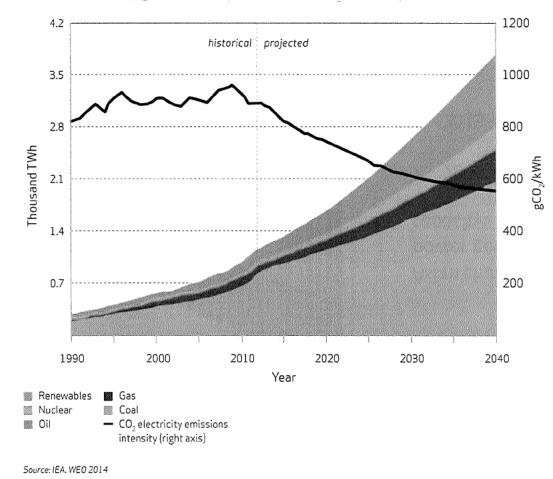
India

China

All Asia Total

Asian share of global coal power generation capacity:

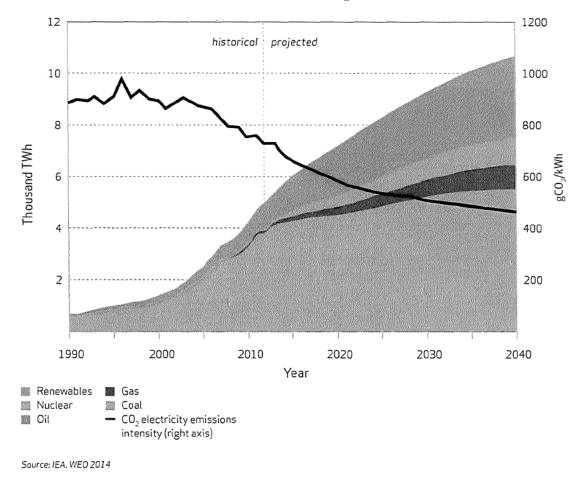
- 2000 38%
- 2015 69%
- 2040 77%


Will require an additional 1 billion tonnes per annum of coal

Large-scale power generation will be a critical enabler of growth in India

India's electricity generation by source and CO, intensity in the New Policies Scenario

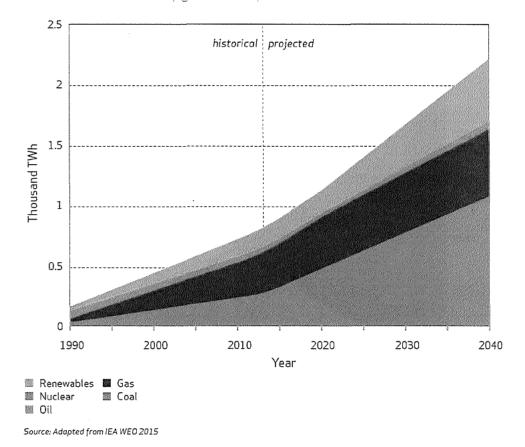
- Electricity demand in India is expected to average 4.4% pa over the next 25 years
- While coal generation capacity more than doubles, renewables are required to increase exponentially (nonhydro renewables over 10 times) to meet demand
- IEA indicates that maintaining an adequate electricity supply represents a significant investment challenge requiring \$2 trillion (in 2013 dollars)



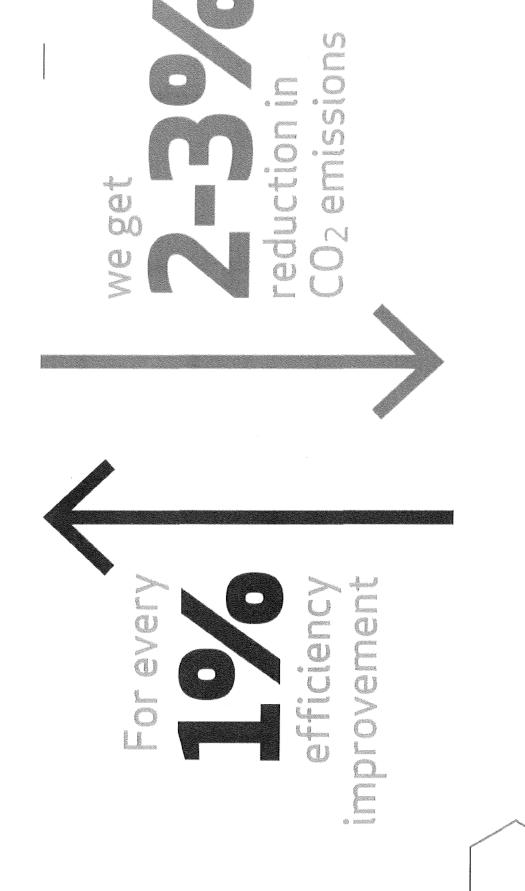
Coal will continue to play a big role in China

- China's electricity demand growth will be around 4.8% to 2020, then decline to around 2% through to 2040
- Electricity generation from coal will be 27% higher in 2040, despite its share of generation reducing from 75% to 49%
- Non-hydro renewables are expected to increase 1200% over the same period (25% of world generation)

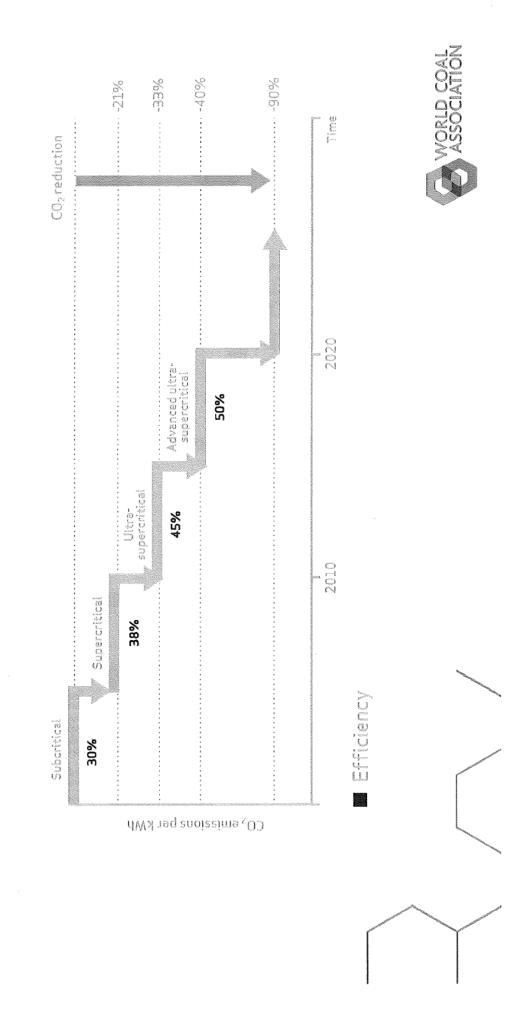
China electricity generation by source and CO₂ intensity in the New Policies Scenario



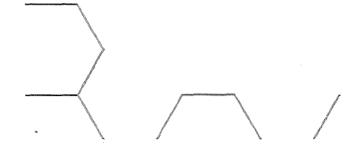
Coal will drive Southeast Asian energy


- Electricity demand almost triples over the period, to around 2 000 TWh in 2040, an increase bigger than current demand in India.
- The share of coal in power generation rises from 32% to 50%
- Renewables-based electricity generation increases three and half times from today to 2040 (481 TWh)
- IEA requires \$2.4 trillion investment over the period to 2040. This represents around 5% of the global total, or one-third of China's investment
- Southeast Asia will move from 46% to 60% urbanised by 2040, vs OECD 85%

Southeast Asia electricity generation by source in the New Policies Scenario

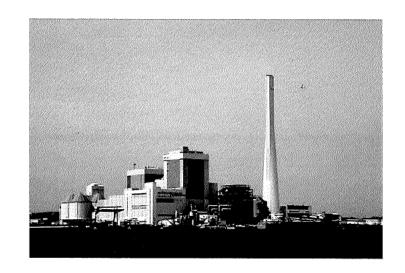

Higher efficiency reduces CO2


HELE technologies continue to develop


CO2 reduction potential of coal-fired power plants by increased efficiency

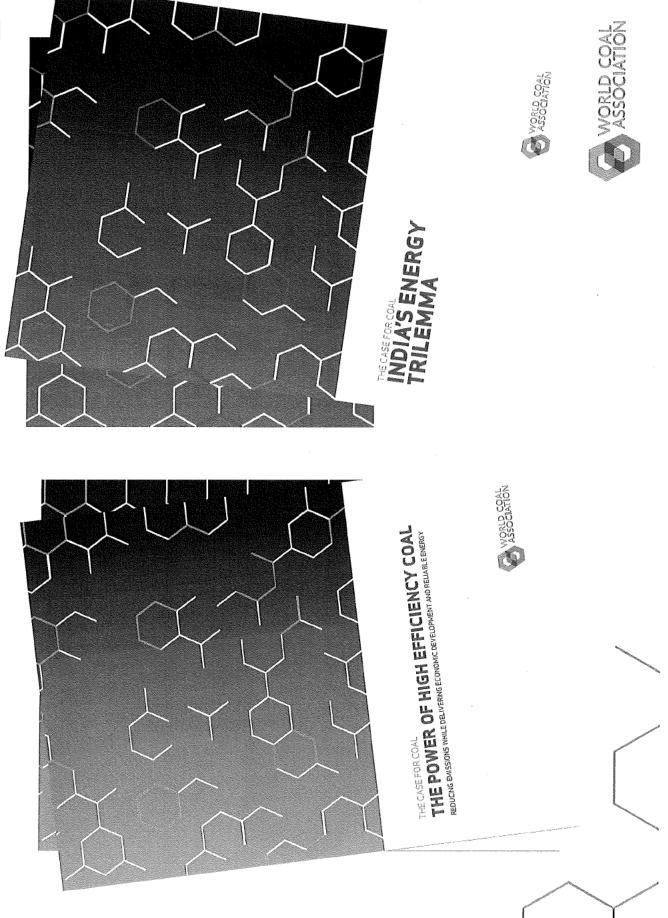
What is high efficiency low emissions coal?

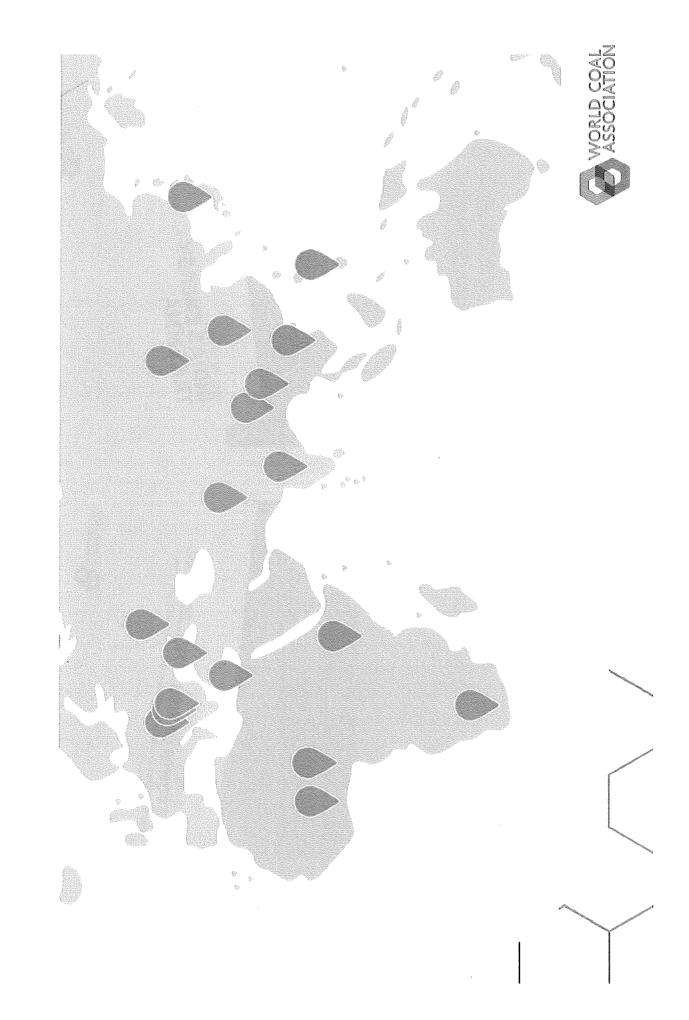
Which are HEL	E technologies?	Efficiency rate*	CO ₂ intensity	Coal consumption	Steam temperature
More efficient	Advanced ultra-supercritical	45-50%	670-740g CO₂/kWh	290-320g/kWh	700°C+
	Ultra-supercritical	Up to 45%	740-800g CO₂/kWh	320-340g/kWh	600°C+
Less	Supercritical	Up to 42%	800-880g CO ₂ /kWh	340-380g/kWh	Approx. 550°C-600°C
efficient	Subcritical	Up to 38%	≥880g CO₂/kWh	≥380g/kWh	<550°C

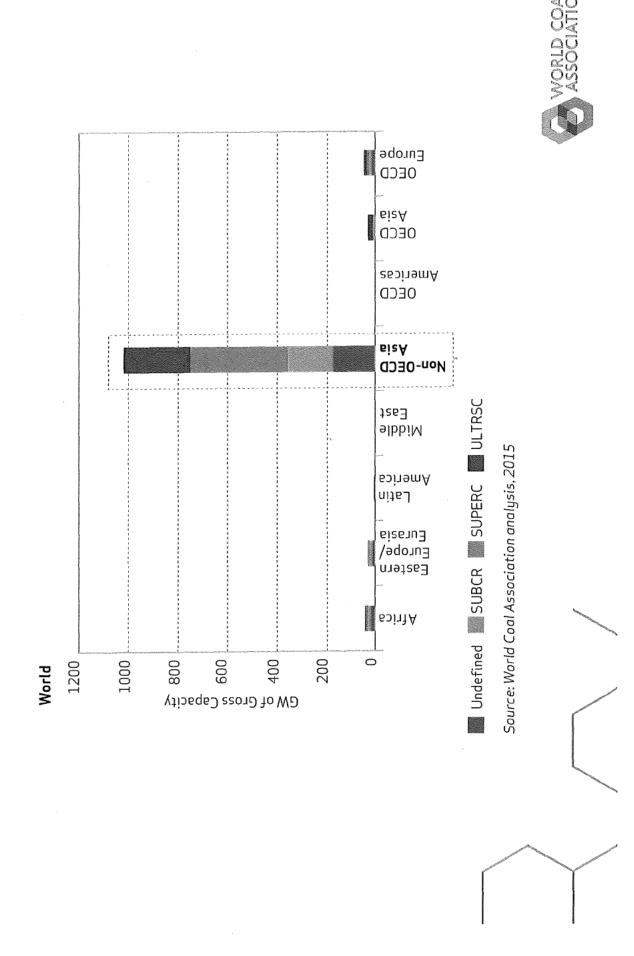


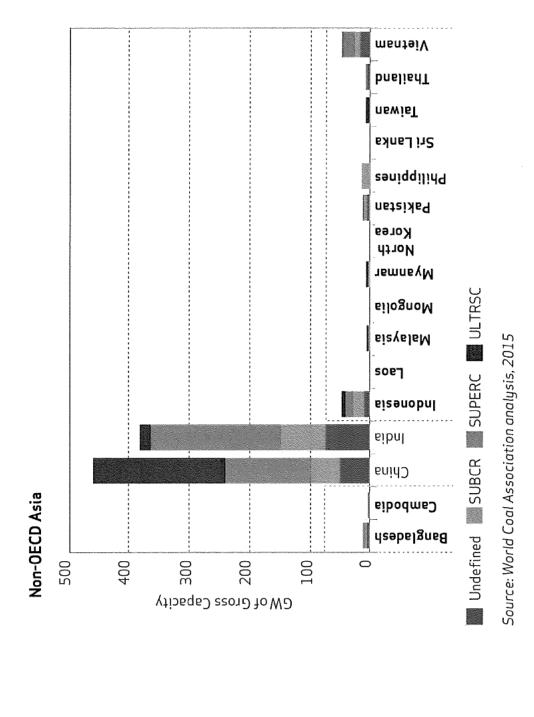
*Lower heating value

HELE can become the global standard for coal

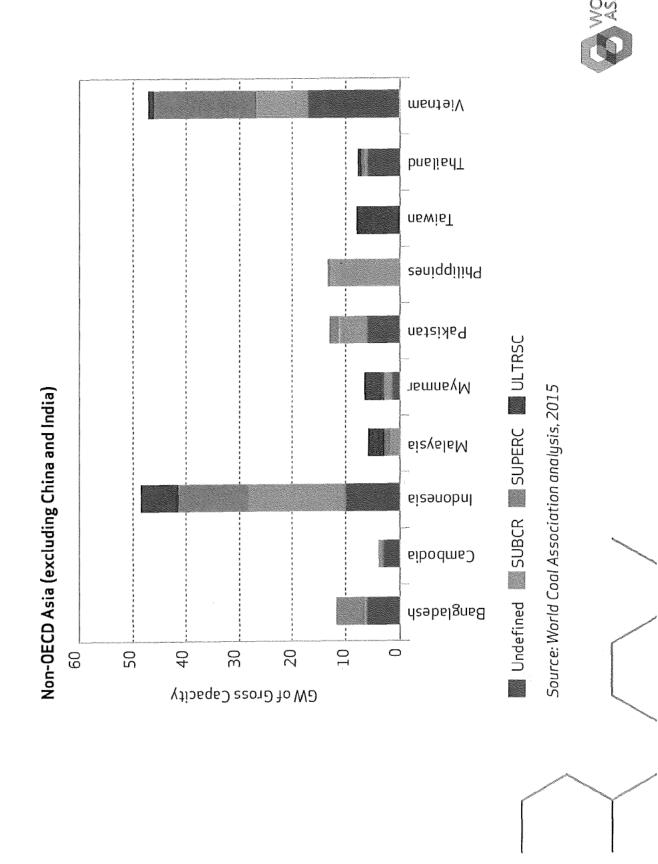

- Japan and China have been the most active in building USC plants
- J-Power upgraded their 1967 sub-critical Isogo 38% efficient coal-fired power plant to an USC 43% efficiency plant with SOx, NOx, PM reduced to less than 1/3 of previous levels
- China's Ninghai plant has a capacity of 4,400MW and China is relying on these larger, advanced units for dispatch to displace higher emission from older, less efficient power stations
- The units have integrated advanced air quality control systems, yielding non-carbon air emissions well below China's latest more stringent standards, and also below comparable standards in North America and Europe



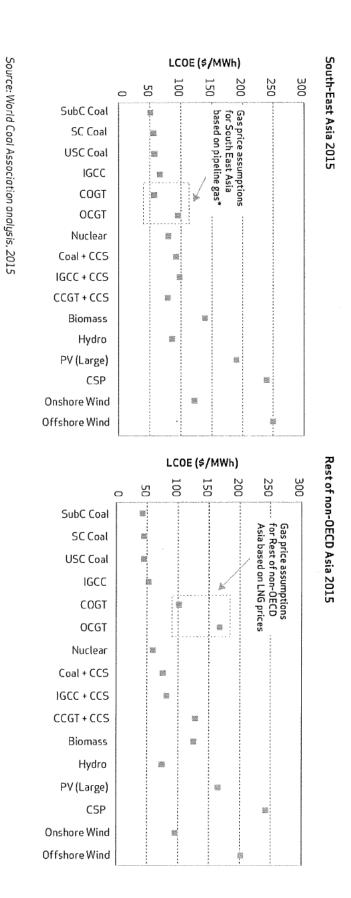

WCA wants to see more action on HELE


HELE is part of the Paris Agreement

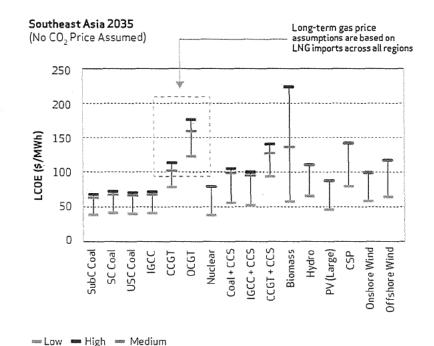
Coal plant development mix of HELE and not

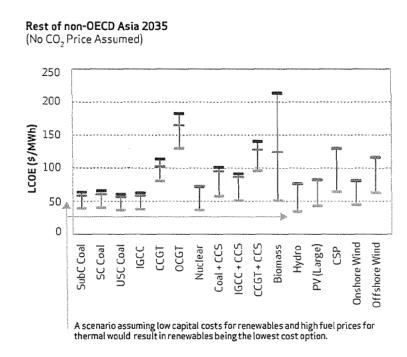


China committed to HELE, others less so



Non-OECD Asia needs to make HELE switch


Lifetime Cost of Electricity per MWh across Generation Technologies in 2015

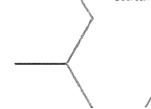


... and in the future (and so is coal+CCS)

Lifetime Cost of Electricity per MWh across Generation Technologies in 2035

Source: World Coal Association analysis, 2015

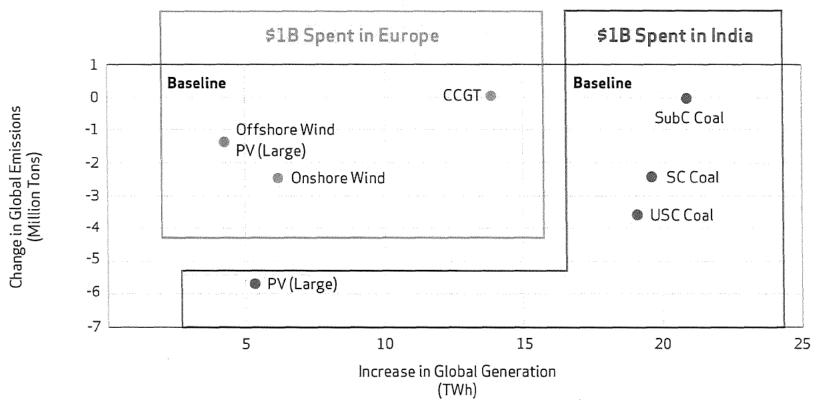
Per \$ of investment HELE more powerful

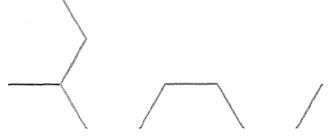

Compared to renewables, HELE technologies can reduce more emissions for the same upfront investment

Investment Option	Generation Mix for 10,000 TWh (%)		Required Capacity (GW)		Total CAPEX ¹	% Increase in CAPEX	Annual Emission	
	Coal	Renewable	Coal	Renewable	(\$Billion)	to Baseline	(Bn. tCO ₂₎	
Sub-Critical Coal Only	100	0	1,343	0	699	Baseline	9.5	\$233 Billion of additional funding required For the same additional financing, ultra super-critical coal technology generates the least amount of emissions
Ultra Super-critical Coal Only	100	0	1,343	0	932	33	7.0	
Sub-critical Coal and Onshore Wind	95	5	1,269	241	932	33	9.0	
Sub-critical Coal and Solar PV	96	4	1,284	264	932	33	9.1	
Onshore Wind Only	0	100	0	4,391	4,944	607	0	
Solar PV Only	0	100	0	6,008	6,002	759	0	

Low load factor renewable technologies means significantly higher required capacity - and therefore higher CAPEX - to generate the same TWh of electricity

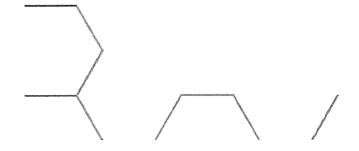
Notes


1) Based on IEA's WEO 2014 New Policy Scenarios capital cost estimates for China in 2035 with construction costs spread equally over the construction period Source: World Coal Association analysis, 2015



HELE in India – meeting twin objectives

Deploying cleaner coal technology promotes energy access, while managing emissions of carbon dioxide



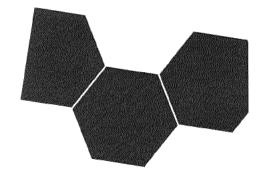
HELE in India – examining the impact

The environmental benefits of deploying cleaner coal technology in India

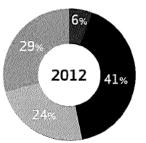
Scenario	Capacity mix	CO ₂ emissions	CO ₂ abated equivalent to			
		(tCO ₂) (over 40 years)	Subcritical plant closure	Number of new wind turbines	Cars removed from the road	
Mix per development pipeline	USC 6 SC 167 SubC 118	84 Billion				
Shift to Supercritical	USC 6 SC 286	80 Billion	28	26,000	200 million	
Shift to Ultra Supercritical	USC 292 SC 0 SubC 0		69	65,000	500 million	

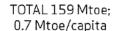
WCA supports coordinated international action

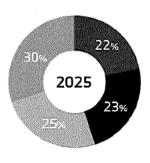
- International platform to help drive deployment of HELE technologies in developing and emerging economies
- Public private partnership to overcome financial, technical and regulatory barriers
- Currently seeking partners to help build an initial alliance

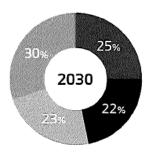


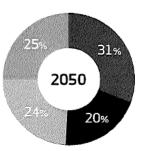
WCA PACE workshop with Indonesia







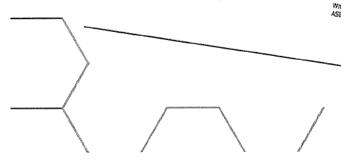

Indonesia's national energy mix plans to 2050



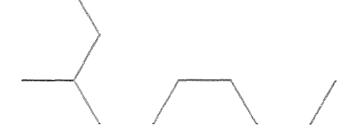
TOTAL 400 Mtoe: 1.4 Mtoe/capita



TOTAL 480 Mtoe; 1.7 Mtoe/capita


TOTAL 1,000 Mtoe; 3.2 Mtoe/capita

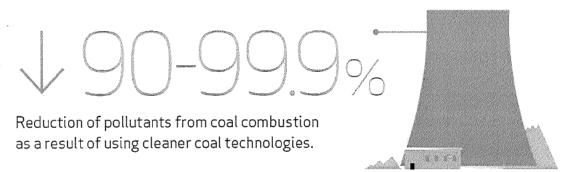
Source: NEC (National Energy Council) (2014), National Energy Policy 2014-2025, NEC. Jokarto



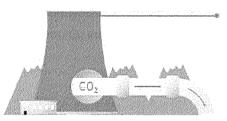
A global initiative on HELE would have impact

Emission reductions by policies /actions, bn tonnes CO2 equivalent

Policy / Action	Annual emissions
Montreal protocol	5.6bn
Hydropower worldwide	2.8bn
Nuclear power worldwide	2.2bn
Increase average global efficiency of coal-fired power plants to 40%	2bn
Other renewables worldwide	600m
US vehicle emissions & fuel economy standards	460m
Clean Development Mechanism	150m
Global Environment Facility	100m
EU energy efficiency	58m
EU renewables	29m


Source: Adapted from The Economist and the IEA 2014

Deploying HELE also has other benefits

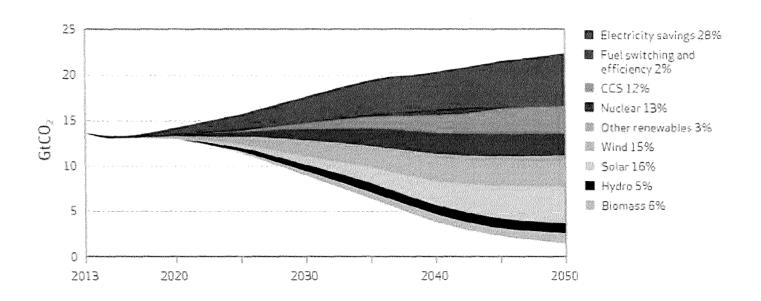

Air quality

CCS


THE ROLE OF CARBON CAPTURE AND STORAGE (CCS)

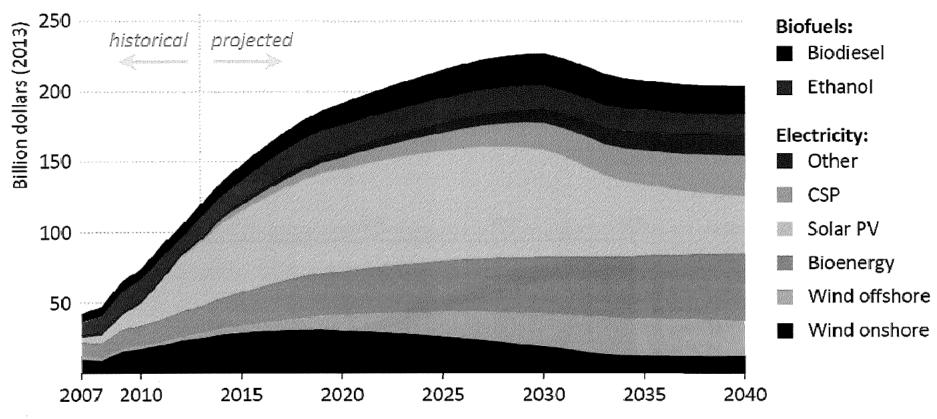
CCS is an integrated suite of technologies that can capture up to 90% of the CO_2 emissions produced from the use of fossil fuels in electricity generation and industrial processes, preventing the CO_2 from entering the atmosphere. The technology is also effective in capturing other emissions.

90%


Amount of CO₂ emissions that could be captured through CCS technologies.

CCS is critical to global climate objectives

Contribution of different technologies to cumulative annual emissions reductions

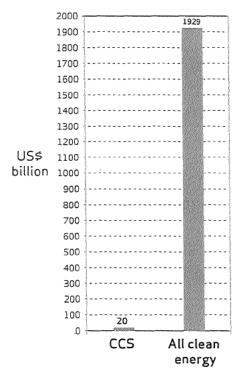

Source: IEA Energy Technology perspectives 2016

- CCS is expected to deliver 12% of cumulative GHG emissions cuts through to 2050. It is therefore a key low-carbon technology
- The world's first large scale integrated CCS project capturing CO2 from a coal-fired power plant – SaskPower's Boundary Dam – has just started full scale operation at the end of September 2014

CCS needs policy parity with renewables

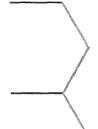
- In the period 2007 to 2016, value of global policy support for renewable energy deployment was around US\$800B.
- Total value of policy support for deployment of CCS over all time is around \$20B

 Data source:IEA, World Energy Outlook 2014, Global CCS Institute



Why CCS has been slow to progress

Clean energy investment* between 2004 - 2013 (billion US\$)

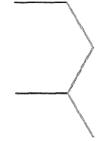

CCS: \$20 billion

All clean energy: \$1929

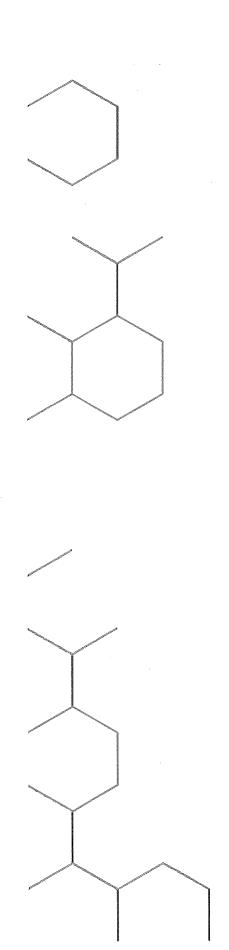
*includes technology development, projects. M&A Source: IEA

CCS is real, and happening now

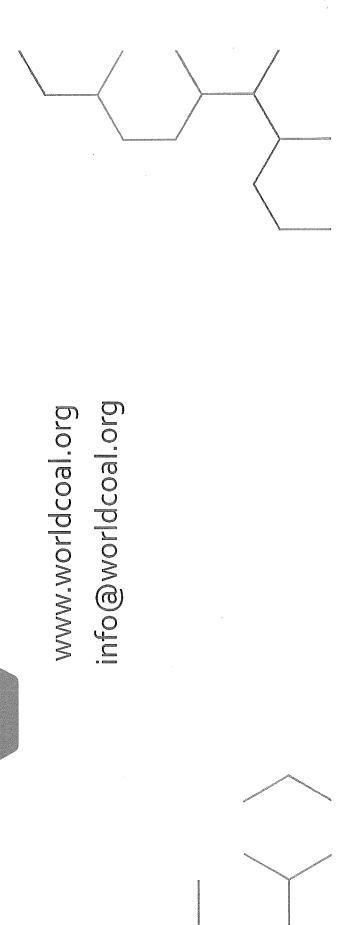
- The world's first application of CCS at large scale in the power sector became operational in October 2014, at the Boundary Dam power station in Canada (1 Mtpa CO2 capture)
- An upgrade of a 196o's coal unit chosen by Saskpower over gas and renewables
- Two more large scale applications of CCS in power will come on line in 2016 in the US
 - Kemper County Energy Facility (3 Mtpa, Mississippi)
 - Petra Nova Carbon Capture Project (1.4 Mtpa, Texas)
- Large-scale application of CCS will become a reality in iron and steel in 2016 at the Abu Dhabi CCS Project (0.8 Mtpa)
- A further 14 projects are in advanced planning (FEED)



- Boundary Dam, Saskatchewan, Canada
- Coal-fired 110MW CCS 1Mtpa plant operational October 2014
- \$1.4Bn Government and SaskatchewanPower Co partnership



In summary – the WCA view


- We must recognise that coal is an important driver of affordable, reliable energy to support economic development and competitiveness
- Coal plays a major role in industrialising and urbanising economies
- In any scenario coal is still going to play a major role in the world's energy mix – especially across Asia
- We can significantly reduce emissions from coal with commercially available technology today – we should encourage and support deployment of HELE technologies in preference of less efficient technologies
- More public support is needed to facilitate increased commercial demonstration of CCS to drive costs down so that we can begin a transition toward near-zero emission fossil fuels

34(1)(c)	

1(1)(c)	

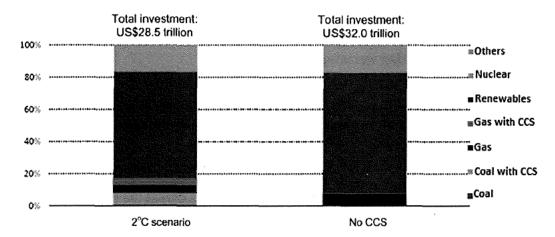
s34(1)(c)	

s34(1)(c)		

s34(1)(c)		

s34(1)(c)	

s34(1)(c)		


s34(1)(c)	
	_

Carbon Capture Use and Storage

s22

Coal-fired power currently comprises 41 per cent of global electricity generation and contributes 30 per cent of the world's energy-related CO2 emissions. While coal will continue to have a place in meeting energy access challenges in Asia, the proportion of the world's electricity that will be produced by coal-fired power plants is set to decline in the coming decades. The IEA projects the coal-fired power share of global generation to fall to 28 per cent in 2040 under existing emissions reduction policies. To meet the 2°C warming commitment, coal shrinks to only 7 per cent of the generation mix by 2040, but 70 per cent of emissions from those coal-fired plants will need to be captured and stored. This coal-fired power generation would mostly be in China and the United States.

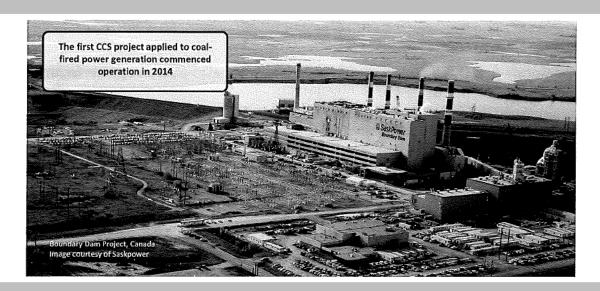
Figure 2: Electricity generation mix in 2040 to meet a 2°C target (with and without CCUS)¹

Under the <u>IEA's scenarios</u>, without CCUS (right hand bar in Fig 1), coal would be entirely eliminated from the electricity generation mix by mid-century, with increased overall cost of the transition.

Shell and Bloomberg's projections are broadly consistent with the IEA, with coal's share of a plausible energy mix in a net-zero emissions world falling to 9 per cent and 8 per cent respectively. Emissions from that coal-fired electricity generation would be largely captured and stored or used.

Global action

s22

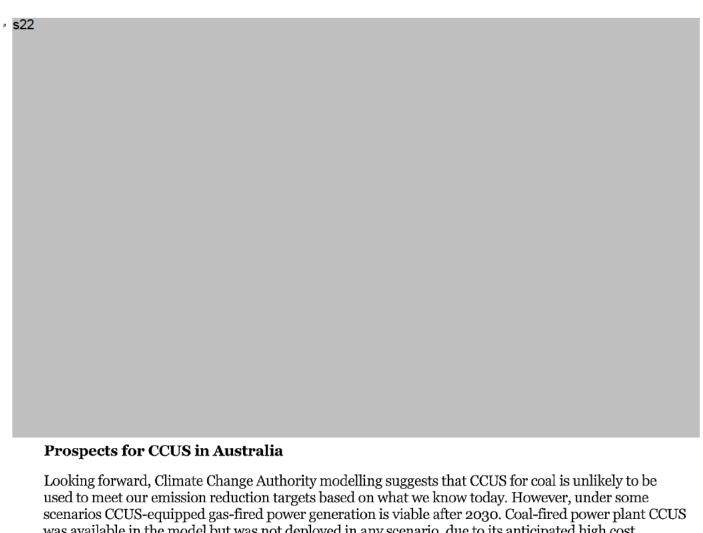

s22

Boundary Dam

in Canada was the world's first demonstration of commercial-scale CCUS at a coal-fired power plant,

¹ Source: International Energy Agency '20 Years of Carbon Capture and Storage: Accelerating Future Deployment', 2016

	and it has attracted a lot of international interest since it opened in 2014. s22		
s22			



s22

s22

Australian domestic CCUS initiatives

- s22
- s22
- CSIRO's Low Emission Coal Technology R&D program
- s22
- The black coal industry's COAL21 Fund (has committed over \$300 million to R&D projects)
- Australian National Low Emissions Coal R&D fund
- Australia-China Joint Coordination Group on Clean Coal Technology

was available in the model but was not deployed in any scenario, due to its anticipated high cost.

s22

S	Conclusion: the challenge ahead	
	Roughly 6 billion tons of coal are used globally each year, producing 18 billion tons of CO2. \$22	
s22		
22		
22		

PDR: MB16-001414

DEPARTMENT OF THE PRIME MINISTER AND CABINET

PM&C Secretary Dr Gruen Dr Kennedy Mr McKinnon Mr Yeaman Ms Yu Mr Duggan Ms Pearce Ms Jones

To: Prime Minister

ADANI GROUP

PMO Mr Clarke \$22 Mr Moriarty \$22

CABINET SECRETARY MEETING BRIEF - MR GAUTAM ADANI, CHAIRMAN AND FOUNDER OF THE

Pur	pose: s47C		Timing and Venue: \$22	
Section 4	7C			
s22				
47C				
s22				
Secti	s22 on 4/C	Sec	ction 47C	

s22		
Section 47C		
Section 47C		
s22		
Section 47C		
Kelly Pearce Assistant Secretary Environment, Energy and Climate Change December 2016	Contact Officer: Section 22 Consultation: Int Div, Eco Div, DIIS, DoEE, Office of Northern Australia.	NOTED: Date:

For Official Use Only

	ATTACHMENT A
s22	

ATTACHMENT B

TALKING POINTS

Section 22	

ATTACHMENT C

BACKGROUND

s22		

- **India's growing energy needs**: India will need to rely on all forms of energy, including coal. 300 million Indians currently do not have access to electricity.
 - o India is making significant investments in high efficiency low emission (HELE) coal fired power plants, which can potentially reduce carbon emissions from electricity generation by up to 40 per cent.
 - o HELE plants require high quality coal to operate most efficiently. As Australia has some of the highest quality coal and India's coal is generally of poor quality, there are excellent opportunities for closer cooperation.

s22	

	PROTECTED: Sensitive: Cabinet	Document 6
Exempt in full s34(3)		